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Abstract

®

CrossMark

Minimizing propagation loss within waveguides remains a central objective across diverse
photonic platforms, impacting both linear lightwave transmission and nonlinear wavelength

conversion efficiencies. Here, we present a method to mitigate waveguide loss in Ge,3Sb;,Seg
chalcogenide glass, a material known for its high nonlinearity, broad mid-infrared transparency,
and significant potential for mid-IR photonics applications. By applying a sacrifical oxide layer
to eliminate etching residues and a subsequent waveguide thermal reflow to smooth
lithography-induced line edge roughness, we successfully reduced the waveguide loss down to

0.8 dB cm™! at 1550 nm wavelength. This represents the best result in small-core and
high-index-contrast Ge,gSb>Segy channel waveguides. Our approach paves the way for

low-loss, on-chip chalcogenide photonic devices.

Keywords: waveguide loss, chalcogenide glass, CMOS compatible process, thermal reflow

1. Introduction

Reducing propagation loss within planar waveguides has
emerged as a persistent and critical focus. Low-loss wave-
guides contribute significantly to improved signal-to-noise
ratios, higher detection sensitivities, and enhanced efficiency
in light-matter interactions, which serves as the cornerstone for
achieving optimal performance in diverse on-chip active and
passive devices. To date, extensive research has explored tech-
nologies to mitigate the waveguide loss in various photonic
flatforms, including silicon [1], silicon nitride [2], silicon
carbide [3], germanium [4], and III-Vs [5]. Specifically, low-
loss silicon nitride waveguides have reached a remarkably
low 0.014 dB cm™! value, which represents the lowest record
among all planar waveguide platforms [6]. The successful
demonstration of ultra-low loss in silicon nitride waveguides

i These authors contributed equally to this work.
Author to whom any correspondence should be addressed.

soon promotes several striking technologies, such as self-
injection-locked turnkey soliton combs [7], highly coherent
supercontinuums for tomography [8], and monolithic on-chip
amplifiers [9].

While these material platforms have exhibited successful
demonstrations in the near-IR, they become inevitably lossy
when entering the mid-infrared (mid-IR) spectral regime due
to phonon absorptions. The mid-IR regime holds immense
potential for applications in chemical sensing, health mon-
itoring, and spectroscopy due to the presence of numerous
“fingerprint’ vibrational bands of molecules in this range
[10]. On-chip solutions, facilitated by the emergence of
CMOS-compatible technologies, address the growing demand
for miniaturization and adherence to SWaP-C (size, weight,
power, and cost) criteria for successful commercialization.
However, in these devices, waveguide losses exert an inversely
proportional impact on key performance metrics. Lower losses
directly translate to enhanced sensitivity, reduced noise levels
[11], lower thresholds for nonlinearities [12] and signal gain
generation [13]. The huge impact of waveguide losses on such

© 2024 I0P Publishing Ltd



DE GRUYTER

Nanophotonics 2023; aop a

Research Article

Yunfei Niu*, Yunlong Niu, Xiaopeng Hu, Yong Hu, Qingyang Du, Shaoliang Yu and Tao Chu*

On-chip wavefront shaping in spacing-varied

waveguide arrays

https://doi.org/10.1515/nanoph-2023-0323
Received May 29, 2023; accepted August 20, 2023;
published online August 31,2023

Abstract: The ability to manipulate light propagation sets
the foundations for optical communication and information
processing systems. With the ever-growing data capacity
and data rate, photonic integrated circuits have attracted
increasing attentions of researchers owing to their large-
volume integration capacity and fast operation speed. In
this work, we proposed and experimentally demonstrated
a new wavefront shaping method using waveguide arrays
with hyperbolic secant refractive index profiles. Through
theoretically analyzing the diffraction and coherence prop-
erties, we found that a single waveguide array can perform
both imaging and phase transformation, which are the two
primary functions of optical lenses. We further expanded
this function and fabricated the corresponding devices on
a silicon nitride waveguide platform. Deterministic beam
shaping, such as focusing, expansion, collimation, and steer-
ing, is successfully realized. This wavefront control method
exhibits the potential for on-chip optical routing, ranging,
sensing, etc., with high integration density and scalability.

Keywords: integrated photonics; wavefront

waveguide array
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1 Introduction

The utilization of wavefront shaping technology has proven
to be a highly efficient approach for manipulating the prop-
agation of light. This technology enables the customization
of light amplitude, polarization, and phase [1-9]. Despite its
demonstrated efficacy, the use of this technology in waveg-
uide systems has been limited because of the difference
in scale between the shaped wavefront and the waveg-
uide dimensions [10]. The integration of this technology
into waveguide platforms, which are considered the funda-
mental building blocks of integrated photonics, could offer
new opportunities for precisely shaping optical signals in
photonic circuits. To achieve on-chip wavefront shaping, it
is necessary to simultaneously manage the diffraction and
also modulate the phase [11]. On-chip diffraction manipu-
lation has been comprehensively explored through kinds
of waveguide systems, such as dielectric waveguides with
a height gradient [12], curved waveguide arrays [13], plas-
monic waveguides [14, 15], and photonic crystal waveguides
[16]. Meanwhile, a precise phase compensation design is
typically accomplished through gradient or graded index
(GRIN) structures, such as sub-wavelength GRIN waveguide
arrays [17, 18], continuous GRIN lenses [8, 19, 20], and gradi-
ent metasurfaces [21-23]. It is worth noting that, all those
works only achieved either one function, it still remains
challenging to achieve precise management of both the
effective index profile and the lateral confinement simulta-
neously in waveguide systems.

Arrayed waveguides stand out as a promising solu-
tion for on-chip wavefront shaping. Waveguide arrays have
proven to be highly effective for a range of on-chip appli-
cations, including imaging [13, 24, 25], light detection and
ranging (LiDAR) [11, 26-28], quantum system simulation
[29-34], and multiport information processing [35-38]. In
wavefront shaping, compensating for the phase of the wave-
front and confining the wavevector laterally (perpendic-
ular to the waveguide direction) in arrayed waveguide
systems is a challenging task due to the inherent diffrac-
tion nature of light. This work demonstrates the success-
ful implementation of on-chip wavefront shaping through
the use of dielectric spacing-varied waveguide arrays. Our

3 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
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A high-flux entangled-photon source is a key resource for quantum optical study and application. Here,
it is realized in a lithium niobate on isolator (LNOI) chip, with 2.79 x 10'! Hz/mW photon-pair rate and
1.53 x 10° Hz/(nm mW) spectral brightness. These data are boosted by over 2 orders of magnitude com-
pared with existing technologies. A 160-nm-broad bandwidth is engineered for eight-channel multiplexed
energy-time entanglement. Harnessed by high-extinction-frequency correlation and Franson interferences
up to 99.17% visibility, such energy-time-entanglement multiplexing further enhances the high-flux data
rate and warrants broad application in quantum-information processing on a chip.
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L. INTRODUCTION

The lithium niobate (LiNbO3, LN) crystal is known for
its superior optical performance [1], such as low optical
transmission losses and large electro-optical and second-
order nonlinear coefficients. Therefore, it is used for the
fabrication of top-notch optical devices for both classical
and quantum-information applications. Recent progress in
thin-film LN-on-insulator (LNOI) [2] technology enables
a revolutionary footprint reduction of LN devices by over
3 orders of magnitude, and thus, makes a magnificent
step forward towards efficient on-chip photonic integra-
tion. Various high-performance on-chip optical devices
have been developed based on such LNOI chips, including
low-loss waveguides [3—5], high-quality-factor microring
resonators [3,5,6], and high-speed electro-optic modula-
tors [7,8], for applications in second-harmonic generation
[9-11], optical-frequency comb generation [12,13], and
supercontinuum generation [14,15].

Actually, conventional waveguide devices on bulk-
crystal LN wafers, with much weaker mode confinement
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compared with LNOI devices, already show high efficien-
cies and performances in the form of integrated quantum
optical circuits [2,16]. Quantum states can be generated
with unparalleled brightness by spontaneous parametric
down conversion (SPDC), and further tailored and mod-
ulated by domain engineering [17—19] and electro-optic
modulation [20-22]. Recently, important progress has
been reported, which is that electro-optic modulators have
been realized with over 100-GHz [7,8] bandwidth on the
LNOI chip. Itis not only a breakthrough in classical optical
communication, but also offers the ultimate single-photon
switching power that can be matched with on-chip photon
flux in the order of about 100 GHz. From the nonlin-
ear optical point of view, it is natural to expect, with
emerging LNOI technologies, to push the photon-state
generation and processing efficiency to that level, fulfilling
the requirements of next-generation quantum optical inte-
gration. A high-brightness entangled-photon source is one
of these key requirements, because it is basis for high-data-
rate qubit generation, communication, and processing.
Here, we demonstrate multiplexed energy-time-
entangled photon generation from a domain-engineered
LNOI chip, with an ultrahigh photon-pair generation
rate of 2.79 x 10! Hz/mW that is compatible with
current LNOI electro-optic modulators. Small group-
velocity dispersion (GVD) is engineered in the type-zero
quasi-phase-matching (QPM) [23] SPDC process in a

© 2021 American Physical Society
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proton-exchanged periodically poled LiNbQO;
waveguides

Yunfei Niu (fl =), Lei Yang (1 %), Dongjie Guo (5 7:i), Yan Chen (Ff ¥2),
Xiaoyang Li (#=H¢fH), Gang Zhao (& NI)*, and Xiaopeng Hu (#/Mi§)**

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and School of Physics,
Nanjing University, Nanjing 210093, China
*Corresponding author: zhaogang@nju.edu.cn; **corresponding author: xphu@nju.edu.cn
Received June 28, 2020; accepted August 3, 2020; posted online September 27, 2020

We report efficient generation of 671 nm red light based on quasi-phase-matched second harmonic generation of
1342 nm in LiNbO; waveguides. The design method and fabrication process of the high-quality annealed proton-
exchanged periodically poled channel waveguides were presented. A continuous-wave 1.71 mW red light was

2

obtained with a single-pass conversion efficiency of 47% - W' - em™?, which is 88% that of the theoretical value.

While for 1 mW quasi-continuous-laser input, the corresponding peak power being 2 W, the conversion efficiency

reached up to 60%. Our results indicate that the annealed proton-exchanged periodically poled LINbO; wave-

guide is promising for high-efficiency and low power consumption nonlinear generation of visible light.
Keywords: lithium niobate; second-harmonic generation; optical waveguides; proton exchange.

doi: 10.3788/COL202018.111902.

Coherent red light sources at around 671 nm have impor-
tant applications such as full-color laser display?, optical
cooling and trapping of lithium atoms?, and generation of
entangled beams in quantum information technology.
Frequency doubling of neodymium-doped solid-state
lasers is a conventional approach to obtain 671 nm laser
light sources, and nonlinear crystals based on the quasi-
phase-matching technique are commonly used due to the
high-frequency conversion efficiency. Generation of red
light at 671 nm based on second-harmonic generation
(SHG) using quasi-phase-matched bulk crystals has been
demonstrated, such as single-pass SHG using periodically
poled stoichiometric LiTaO;2% and extra-cavity frequency
doubling with periodically poled KTiOPO,%. Nonlinear
interactions can be more efficient in waveguides compared
with that in bulk crystals, because the light field is confined
in a small cross section. In addition, high optical intensity is
maintained over a long propagation length without diver-
gence by diffraction, and thus efficient frequency conver-
sions can be achieved in a single-pass configuration,
reducing the complexity of the optical setup as compared
to extra-cavity frequency conversions. There are several
techniques to obtain the waveguide structure in LiNbOs,
such as annealed proton exchange (APE)Y, Ti in-
diffusion?, and optical grade dicing™¥. APE LiNbO;
waveguides show low propagation loss and fine nonlinear
performance due to the annealing process. Besides, com-
paring with optical grade dicing, where the high-precision
dicing technique is needed, the fabrication process of
APE is relatively simple. High-performance quasi-phase-
matched second-order nonlinear interactions have been
demonstrated in APE periodically poled LiNbO3; (PPLN)
waveguides, such as generation of high-brightness
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entangled photons, enhanced electro-optic spectral tun-
ing device, and efficient third-harmonic generation in the
communication band®?.

In this work, we designed and fabricated APE PPLN
waveguides for 671 nm red light generation and character-
ized the SHG performances of the nonlinear waveguides.
The normalized SHG efficiency was 47% - W' - em™2 for
continuous-wave (CW) input at 1342 nm. In addition,
when the quasi-continuous fundamental wave (FW) with
a peak power of 2 W was used, the conversion efficiency
was 60%.

To design the APE PPLN channel waveguides, the geo-
metric structure and the poling period of the waveguide
are the key parameters. Since the proton-exchange process
only increases the extraordinary refractive index (n,), only
TM modes are supported in zcut APE waveguides. The
extraordinary refractive index change of the APE LiNbO;
waveguide can be described as An, = §(4) - C(y, z), where
5(2) is the wavelength-dependent coefficient, and C(y, 2)
is the normalized proton concentration?. The profile of
C(y, z) is determined by the channel width W and the
annealing depth DY, and the annealing depths in the z
direction and y direction were assumed to be the same
for simplicity. To obtain low propagation loss, the surface
proton concentration Cy = C(0,0) should be smaller than
0.23%9 and thus a relatively large annealing depth is re-
quired to support the guide mode in the near-infrared
spectral range. The single-mode condition for the
FW at 1342 nm was estimated as follows: W = 6 pm,
D =3pm, and 0.12 < Cj < 0.16. The simulated refractive
index increment of the TM; mode at 1342 nm and 671 nm
is shown in Fig. 1(a). The effective refractive index of the
TMyy mode was numerically calculated using COMSOL

© 2020 Chinese Optics Letters
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ABSTRACT

Lithium niobate on insulator (LNOI) is a unique platform for integrated photonic applications and especially for high-efficiency nonlinear
frequency converters because of the strong optical field confinement. In this work, we fabricated a 6-mm-long periodically poled LNOI ridge
waveguide with an optimized duty cycle (50:50) using an active domain structure monitoring method. The performance of the single-pass
second-harmonic generation and difference-frequency generation in the nanophotonic waveguide was characterized, and the normalized
conversion efficiencies were ~80% of the theoretical values. These high-quality frequency conversion devices can pave the way for the appli-

cation of LNOI in nonlinear integrated photonics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142750

The lithium niobate on insulator (LNOI) platform has drawn
increasing attention in recent years. LNOI inherits the excellent mate-
rial properties of lithium niobate (LINbO;) single crystals, such as a
wide low-loss transparency window, a strong electro-optic (EO) coef-
ficient,' and high second-order nonlinearity.” Moreover, an LNOI
platform offers stronger optical confinement compared to conven-
tional weakly confining LiNbO; waveguides, such as proton
exchanged and titanium in-diffused waveguides,”" which leads to
improved optical signal processing capabilities and enhanced light-
matter interactions. Because of these advantages, photonic devices
based on LNOI can be more compact and efficient. LNOI has been
employed to construct many photonic devices, including high-
performance LiNbO; integrated EO modulators working at CMOS-
compatible voltages,”* ultrahigh-efficiency frequency converters,”’
high-Q micro-resonators,” and photonic crystal micro-cavities. "’

LiNbO; has been widely used for second-order nonlinear fre-
quency conversion in nonlinear optics because of its high second-
order nonlinear coefficient. To realize efficient frequency conversion
in LNOI waveguides, phase-matching is a key aspect. To date, several

schemes have been used to achieve phase-matching in LNOI-based
nonlinear optical elements, such as modal phase matching,'' "’
metasurface-assisted phase-matching,'* and quasi-phase matching
(QPM). Among these methods, quasi-phase-matched LNOI wave-
guides can offer several advantages such as phase-matching arbitrary
second-order nonlinear optical processes within the transparency
range of the crystal, access to the largest nonlinear coefficient, and
phase-matching of interactions between the TEy, modes that exhibit
the tightest mode confinement. Periodically poled ferroelectric domain
structures have been fabricated on LNOI platforms, and they have
been implemented to demonstrate quasi-phase-matched second-order
nonlinear processes such as second-harmonic generation (SHG),”'" "
sum-frequency generation (SFG),' difference frequency generation
(DFG), and spontaneous parametric downconversion (SPDC)."”
Because of sub-wavelength optical confinement, ultrahigh-efficiency
frequency conversion, e.g., 2200%-2600% W' em™? normalized effi-
ciencies for SHGs in the communication C-band, was reported with
such nanophotonic waveguides that were several millimeters long.”"’
However, the measured efficiencies were only ~60% or lower than the
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